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Nonlinear Langevin equations and the time dependent density functional method

Akira Yoshimori
Department of Physics, Kyushu University, Fukuoka 812-8581, Japan

~Received 19 January 1999!

To study the time dependent density functional method~TDDFM!, two streaming velocity~reversible! terms
are reformulated in the nonlinear Langevin equation. Mori’s@Prog. Theor. Phys.33, 423 ~1965!# projection
operator method shows a variety of nonlinear Langevin equations. This is because the equations depend on the
choice of phase space functions employed in the projection. If phase space functions include particular func-
tions, however, the streaming velocity term has an invariable form. The form is independent of the choice of
other phase space functions. Since the invariable streaming velocity term does not introduce the TDDFM, the
second viewpoint is presented. In this, the linearization of the streaming velocity term agrees with the fre-
quency term in the linear Langevin equation. Since only the second streaming velocity term introduces the
TDDFM, one needs to be cautious in the derivation of the TDDFM.@S1063-651X~99!10506-3#

PACS number~s!: 05.20.Jj, 05.40.Jc, 05.45.2a, 05.60.Cd
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I. INTRODUCTION

Many authors have employed the time dependent den
functional method~TDDFM! @1,2# to examine dynamica
properties of classical liquids@2–10#. Linear @3–5# and non-
linear @5,6# TDDFM’s have brought out a deep understan
ing of solvation dynamics. With the TDDFM, Araki and Mu
nakata calculated shear viscosity and a self-diffus
constant@9#. In addition to normal liquids, the TDDFM ha
recently been applied to supercooled liquids or glass st
@2,10#.

Though the TDDFM has been extensively employed, f
authors have studied its microscopic derivation@11#. The
TDDFM was not developed from the Liouville equation th
provides a microscopic basis. One cannot explain, in part
lar, the origin of the term including a free energy function
derivative in the basic equation of the TDDFM.

If the TDDFM is related to nonlinear generalized Lang
vin equations, one can microscopically derive it. This is b
cause nonlinear generalized Langevin equations are der
from the Liouville equation. The nonlinear generaliz
Langevin equation is divided into three parts: the stream
velocity term, the memory term, and the random force. T
streaming velocity term does not contribute to entropy p
duction, so that it is also called the reversible term@12#. One
can expect that the streaming velocity term causes the
energy functional term in the TDDFM, if the velocity an
number densities are selected as the dynamical varia
Their relation, however, has not yet been established.

A nonlinear generalized Langevin equation has been
mulated from the Liouville equation@13#. After Green@14#
and Zwanzig@15# derived the Fokker-Planck equation, Mo
and Fujisaka@13# have formulated the generalized nonline
Langevin equation. Mori and Fujisaka projected the Lio
ville equation onto thed functions of the dynamical vari
ables. Their streaming velocity term was the same as tha
the Fokker-Planck equation derived by Green@14# and
Zwanzig @15#.

One cannot establish the TDDFM from the nonline
Langevin equation formulated by Mori and Fujisaka beca
of the difference in the definitions of free energy. Mori a
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Fujisaka formulated the free energy by thed functions. On
the other hand, the free-energy functional in the TDDFM
thermodynamically defined by the cumulant function or t
fictional external fields@16–18#. The two kinds of free en-
ergy agree at the long-wavelength limit of fluctuations
density. Small-wavelength fluctuations in density, howev
have a large difference.

The TDDFM is possibly established from other nonline
Langevin equations than that derived by Mori and Fujisa
This is because various kinds of projections lead to vari
nonlinear Langevin equations@19#. While Mori and Fujisaka
employed projection onto thed functions, one can also de
rive another Langevin equation from another kind of proje
tion. For example, the projection onto the dynamical va
ables themselves leads to Mori’s linear Langevin equat
@20#. Thus the TDDFM is possibly related to other proje
tions than that by Mori and Fujisaka.

In the relation between the TDDFM and nonlinear Lang
vin equations, the streaming velocity term plays an import
role. The free energy definition in the TDDFM is differen
from that in the equation by Mori and Fujisaka. For the T
DFM, the free energy functional is included in the streami
velocity term, if the velocity and number densities are s
lected as the dynamical variables.

In addition, studying the streaming velocity term is im
portant because one can exactly calculate the term from
microscopic viewpoint. The calculation of the streaming v
locity term requires information only on equilibrium state
while the memory term and random force require a dyna
cal knowledge. This allows one to learn the form of t
streaming velocity term definitely, though one can only a
proximately estimate the other two terms. Thus one need
establish the microscopic derivation of the streaming vel
ity term for the application.

The purpose of the present study is to study the stream
velocity term in nonlinear Langevin equations to establ
the microscopic derivation of the TDDFM. It focuses on t
streaming velocity term corresponding to the TDDFM.
addition, a physical meaning is established for the differe
between the streaming velocity term corresponding to
TDDFM and that derived by Mori and Fujisaka.
6535 ©1999 The American Physical Society
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6536 PRE 59AKIRA YOSHIMORI
For the purpose, two streaming velocity terms are ref
mulated in nonlinear Langevin equations. The first stream
velocity term is formulated so that the form is independen
projection in Mori’s identity if particular functions belong t
the subspace~Sec. II!. The streaming velocity term is th
same as the term derived by Green@14#, Zwanzig@15#, and
Mori and Fujisaka@13#. The second streaming velocity ter
is formulated so that its linearization agrees with the f
quency term in the linear Langevin equation~Sec. III!. The
TDDFM is developed from the second streaming veloc
term. The two streaming velocity terms agree at the therm
dynamic limit.

II. INVARIABLE FORMS OF STREAMING VELOCITY
TERMS

Mori’s projection operator method shows that nonline
generalized Langevin equations depend on the phase s
functions employed in the projection. In the present stu
the equations describe the time evolution of a set of
namical variables,$Xi%5$X1 , . . . ,XN%. Then the phase
space functions are denoted by A
5„X1 , . . . ,XN ,AN11($Xi%),AN12($Xi%), . . . …. Here
AN1 j ($Xi%) is a function of$Xi%. By projecting the Liouville
equation ontoA, one can derive generalized Langevin equ
tions

Ẋi5(
a

iV iaAa2(
a

E
0

t

M ia~ t2s!Aa~s!ds1Ri~ t !,

~1a!

whereAi5Xi , i 51, . . . ,N. In Eq. ~1a!, one has

iV ia5(
b

^ẊiAb&~AA !ba
21 , ~1b!

Mia~ t !5(
b

^Ri~ t !Rb~0!&~AA !ba
21 , ~1c!

Ra~ t !5eQiLQtQiLAa . ~1d!

Here Q512P, whereP is the projection operator ontoA,
and iL is the Liouville operator. In addition,̂•••& is the
average by the canonical ensemble, and (AA )21 is the in-
verse of the matrix with the element^AaAb&. Since iV ia ,
Mia(t), andRa(t) are functionals ofA, they have different
forms if one of$AN1 j ($Xi%)% is replaced by other functions
This shows that a variety of equations is possible becaus
the choice of$AN1 j ($Xi%)%.

Furthermore, in the Markovian approximation, nonline
Langevin equations also depend on the projection. If moti
except A are slow enough, the Markovian approximatio
leads to

Ẋi5(
a

iV iaAa2(
a

LiaAa1Ri~ t !, ~2a!

where

Lia5E
0

`

Mia~ t !dt ~2b!
r-
g
f

-

o-

r
ace
,
-

-

of

r
s

is the transport coefficient. Since it is a functional ofA again,
the replacement of$AN1 j ($Xi%)% changes values ofLia .

In the nonlinear Langevin equations, one can establish
invariable form of the streaming velocity term if the pha
space functionŝAN1 j ($Xi%)‰ include particular ones. The
invariable streaming velocity term does not change the fo
even if others of̂ AN1 j ($Xi%)‰ are replaced.

If the particular function and another arbitrary functio
are denoted by f i($Xi%) and h($Xi%), then A
5„Xi , f i($Xi%),h($Xi%)… and

iV ia5d f i ,a . ~3!

Here d f i ,a has the value of unity ifa corresponds to

f i($Xi%); otherwise its value is zero. Equation~3! shows that
the streaming velocity term in Eqs.~1a! and~2a! is indepen-
dent of changes inh($Xi%).

Equation~3! provides the invariable form of the streamin
velocity term. From Eq.~1b!, Eq. ~3! is rewritten as

^ẊiAa&5^ f i~$Xi%!Aa&. ~4!

When Aa5h($Xi%), the functional differentiation with re-
spect to an arbitrary function,h($xi%), yields

^Ẋid~X2x!&5 f i~$xi%!^d~X2x!&, ~5!

whered(X2x)5P id(Xi2xi). Thus, to satisfy Eq.~3!, the
function f i($xi%) should have the following form:

f i~$xi%!5
^Ẋid~X2x!&

^d~X2x!&
. ~6!

Equation~6! agrees exactly with the streaming velocity ter
obtained by Green@14#, Zwanzig @15#, and Mori and
Fujisaka@13#.

The invariable streaming velocity terms do not introdu
the TDDFM. If the free energy functional is defined by
2kBTln^d(X2x)&, Eq. ~6! reduces to the reversible term i
the TDDFM. For the TDDFM, however, the free energ
functional is usually defined in a different manner.

One can also derive the invariable form of the other ter
in the Langevin equation. Appendix A provides the deta
The expressions closely agree with those in the general
Langevin equation derived by Mori and Fujisaka@13#.

III. STREAMING VELOCITY TERMS
INTRODUCING THE TDDFM

One needs another viewpoint because the streaming
locity terms derived in Sec. II do not introduce the TDDFM
The viewpoint is that the linearized form of the streami
velocity term agrees with the frequency term in the line
Langevin equation. The linear Langevin equation is deriv
from the Liouville equation in only one manner, unlike th
nonlinear generalized Langevin equation. Thus the viewpo
gives a definite form of the second streaming velocity ter

The viewpoint is formulated using the linear generaliz
Langevin equation@20# for dXi5Xi2^Xi&:



e
e

i

e
he
u
ra
u
e
g

ex

d

a

ve
i-
q

ith

v

e

ve-
ty

nc-

vin

PRE 59 6537NONLINEAR LANGEVIN EQUATIONS AND THE TIME . . .
dẊi5(
j

iv i , jdXj2(
j
E

0

t

g i , j~ t2s!dXj~s!ds1r i . ~7!

Here iv i , j , g i , j (t), and r i are the frequency term, th
memory function and the random force in the linear gen
alized Langevin equation.

From the viewpoint, the second streaming velocity term
given by

iv i , j5
]

]xj
f i~$xi%!uxi5^Xi &

. ~8!

Equation ~8! shows that the integration ofiv i , j yields
f ($Xi%). Such a linearization principle never holds for th
memory function or random force. The linearization of t
terms does not agree with those in the linear Langevin eq
tion. This is because both the linear and nonlinear gene
ized Langevin equations are exactly derived from the Lio
ville equation. The memory function or random forc
includes the nonlinear terms in the linear generalized Lan
vin equation@13#.

To derive the second streaming velocity term, the
tended Gibbs ensemble is introduced@21#. The integration of
iv i , j in Eq. ~8! needs changes in a value of the average,^Xi&.
To change the value, fictional external fields are employe
follows:

^Xi&l[

E XiexpF2bH1(
j

l jXj GdG

E expF2bH1(
j

l jXj GdG

. ~9!

Here b5(kBT)21, where T is the temperature andkB is
Boltzmann’s constant,H is the Hamiltonian, anddG is the
volume element in the phase space. In addition, the par
eter,l i is the function of$xi% given by

xi5^Xi&l . ~10!

Equation~9! describes the extended Gibbs ensemble de
oped in Ref.@21#. The distribution corresponds to the max
mal information entropy for average values given by E
~10!. In the ensemble, the parameterl i has often been called
the ‘‘thermodynamic force,’’ because it is associated w
the gradient of free energy in

l i5
]bF~$xi%!

]xi
, ~11!

where

F~$xi%!52kBTS lnE expF2bH1(
i

l iXi GdG D
1kBT(

i
l ixi . ~12!

is the free energy.
The extended Gibbs ensemble leads to the streaming

locity term. Attachingl to the definition ofiv i , j , one has
r-

s

a-
l-
-

e-

-
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m-

l-

.

e-

iv i , j5(
k

^dẊidXk&l~^dXdX&l!k, j
21 , ~13!

where (̂ dXdX&l)k, j
21 is elementk, j of the inverse matrix of

^dXidXj&l . In Eq. ~13!, the matrix,^dẊidXj&l , is rewritten
as

^dẊidXj&l5
]

]l j
^Ẋi&l . ~14!

In addition, since the matrix,̂dXidXj&l , is given by

^dXidXj&l5
]^Xi&l

]l j
5

]xi

]l j
, ~15!

the inverse is

~^dXdX&l!k, j
215

]lk

]xj
. ~16!

The substitution of Eqs.~14! and ~16! into Eq. ~13! yields

iv i , j5
]

]xj
^Ẋi&l . ~17!

The integration provides

f i~$xi%!5^Ẋi&l . ~18!

Equation~18! shows the streaming velocity term from th
second principle.

The TDDFM is established by the second streaming
locity term. To establish the TDDFM, the velocity densi
J(r )5( ivid(r i2r ) and the number densityr(r )5( id(r i
2r ) are considered, wherevi and r i are the velocity and
position of particlei. If $Xi%5$J(r ),r(r )%, as shown in Ap-
pendix B, one has

^ J̇~r !&l5kBTE dr 8^$J~r !,J~r 8!%PB&l

dbF

dJ~r 8!

1kBTE dr 8^$J~r !,r~r 8!%PB&l

dbF

dr~r 8!
. ~19!

Here $ %PB is the Poisson bracket and the free energy fu
tional F is defined in the same manner as Eq.~12!. Since
^$J(r ),r(r 8)%PB&l5m21¹ r8r(r )d(r2r 8), where m is the
mass of the particle, one derives the hydrodynamic Lange
equations@1#

J̇~r !52
r~r !

m
“

dF

dr~r !

2E dr 8E
0

t

G~r ,r 8,t2s!J~r ,s!ds1f~r ,t !,

~20a!

ṙ~r !52“•J~r !. ~20b!
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6538 PRE 59AKIRA YOSHIMORI
Here, the first term representing the advection in Eq.~19!
was neglected. By the Markovian approximation and dif
sive limit, Eqs. ~20! reduce to the TDDFM including the
random current@1#

ṙ~r !5D“H r~r !“
dF

dr~r !
2mf~r ,t !J . ~21!

The second streaming velocity term derived in the pres
section agrees asymptotically with that in Sec. II at the th
modynamic limit. The Fourier transformation for thed func-
tion in Eq. ~6! yields

^Ẋid~X2x!&5E
2`

`

P idki K ẊiexpF i(
j

kj~Xj2xj !G L ~22a!

5E
2`

`

P idki^Ẋi& ikexpF2 i(
j

kjxj2bF~ ik !G ,
~22b!

where

exp@2bF~ ik !#5

E dG expF2bH1 i(
j

kjXj G
E dG exp@2bH#

. ~22c!

The integral in Eq.~22b! is estimated by the saddle poin
method as follows@22#:

^Ẋid~X2x!&>A^Ẋi&lexpF2(
j

l j xj2bF~l!G . ~23!

Here the integral in Eq.~22b! was translated to an integra
over the linekj5l j / i 1k j , where k j is real, through the
standard contour integral methodology. The constantA is
calculated fromb]2F/]k i]k j . The pure imaginary saddl
point l/ i is given by

b
]F~l!

]l i
52xi . ~24!

Equation~22c! shows that Eq.~24! is the same as Eq.~10!.
In the same manner as Eq.~23!, one has

^d~X2x!&>A expF2(
j

l j xj2bF~l!G . ~25!

From Eqs.~23! and ~25!, one can obtain

^Ẋi&l>
^Xid~X2x!&

^d~X2x!&
. ~26!

One can employ the saddle point method only whenF(l)
andxi have sufficiently large values. IfXi is proportional to
the particle numberN, thenF(l) andxi have large values a
the large-number limit of particles (N→`), becauseF(l)
}N in Eq. ~22c!. This limit is given by the thermodynami
limit.
-

nt
r-

IV. DISCUSSION

The analysis by the invariable form has revealed
physical meaning of the streaming velocity term obtained
previous study@13–15#. The physical meaning is that th
streaming velocity term is obtained by the projection on
the subspace consisting of arbitrary functions of$Xi%. One
can find it by the result that the streaming velocity term do
not change though the phase space functions$Aa% in Eq. ~1a!
include arbitrary functions,h($Xi%). This physical meaning
is not surprising. Mori and Fujisaka obtained the term by
projection ontod functions@13#. The projection onto thed
function is equivalent to that onto the arbitrary functio
@19#.

The physical meaning of the streaming velocity te
shows that the invariable form is important for the Marko
ian approximation. In particular, the invariable streaming v
locity term is superior to the frequency term in the line
Langevin equation. This is because$Aa% in Eq. ~1a! include
the arbitrary functionh($Xi%), while only $Xi% themselves
are selected in the linear Langevin equation. The Markov
approximation works well only when slow variables are s
lected as$Aa%. Usually, if values of$Xi% vary slowly, a
value of an arbitrary functionh($Xi%) also varies slowly.
Then the Markovian approximation is applicable only to t
invariable streaming velocity term.

The second streaming velocity terms in Sec. III are link
with some phenomenological theories without the advant
in the Markovian approximation. In some phenomenologi
theories, the linearization of a nonlinear reversible te
yields the frequency term in the linear Langevin equation
good example is given by the hydrodynamic equations, s
as the Navier-Stokes equation. The linearization of the
drodynamic equations yields the linear Langevin equati
@12#. This shows that the reversible terms in the hydrod
namic equations are obtained in the same manner as th
Sec. III.

The TDDFM does not have the advantage of t
arbitrary-function projection in the same manner as ot
phenomenological theories. The free energy functional te
in the TDDFM does not agree exactly with the invariab
form of the streaming velocity term. However, Eq.~26!
shows that the term approximates to the invariable fo
when density fluctuates on a large scale. This is because
can apply the saddle point method to the large-scale fluc
tion including many particles. The term in the TDDFM fo
short-scale fluctuations, however, is different from the
variable form because they include only a few particles. N
ertheless, the TDDFM has been available for many dyna
cal properties of liquids even in small-scale fluctuatio
@2–9#. The reason for this has never been clear.

The second streaming velocity term can be formulated
a transport equation, though the present study treated it in
Langevin equation. Using the Kawasaki-Gunton project
operator, Zubarev, Morozov, and Ro¨pke developed the sam
streaming velocity term as that from the second principle
the present study@21#. In addition, they also derived th
irreversible term in the transport equation. In the Lange
equation with the second streaming velocity term, t
memory function and random force will be discussed el
where@23#.
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APPENDIX A: INVARIABLE FORMS OF THE
IRREVERSIBLE TERM AND RANDOM FORCE

In this appendix, the invariable forms are established
the second and third terms on the right-hand side in Eq.~2a!.
First, equations similar to Eq.~3! are written for the transpor
coefficient and random force. These equations lead to
invariable form of the irreversible term. In addition, it
shown that the random force has an invariable form.
e
to
o-
t

d

a-

r

e

If $Aa% includes the new particular functionsgi($Xi%) in
addition to f i($Xi%), then for the irreversible term and ran
dom force one has

Lia5dgi ,a , ~A1a!

dRi~ t !

dh~$Xi%!
50. ~A1b!

Here dgi ,a has a similar definition as perd f i ,a . Equations
~A1! show that the irreversible term and random force
independent of an arbitrary function,h($Xi%).

Equations~A1! lead to the irreversible terms. Using Eq
~1c! and ~2b!, Eq. ~A1a! is rewritten as

E
0

`

dt^Ri~ t !Ra~0!&5^gi~$Xi%!Aa&. ~A2!

When Aa5h($Xi%), the functional differentiation with re-
spect toh($xi%) yields
gi~$xi%!^d~X2x!&5E
0

`

dtH K dRi~ t !

dh~$xi%!
Rh~0!L 1 K Ri~ t !

d

dh~$xi%!
iLh~$Xi%!L J . ~A3!

Here ^Ri(t)QA&5^Ri(t)A& was employed, whereA is an arbitrary operator. Then, using Eq.~A1b!, one can obtain the
irreversible term from Eq.~A3! by

gi~$xi%!5
1

^d~X2x!&E0

`

dt^Ri~ t !iLd~X2x!& ~A4a!

5
1

^d~X2x!&E0

`

dt(
j

K Ri~ t !~ iLX j !
]

]Xj
d~X2x!L ~A4b!

52
1

^d~X2x!&E0

`

dt(
j

]

]xj
^Ri~ t !~ iLX j !d~X2x!&. ~A4c!
ge-
For the random force, Eq.~A1b! is satisfied, iff i($xi%) is
given by Eq.~6! andMia(t)5d(t)da,g . Since Eq.~6! satis-
fies Eq.~3!, one has

Ri~0!5Ẋi2 f i~$Xi%!. ~A5!

Thus

dRi~0!

dh~$xi%!
50. ~A6!

Next the time evolution ofdRi(t)/dh($xi%) is considered.
From

dRi~ t !

dh~$xi%!
5

d

dh~$xi%!
„eQiLQtRi~0!…, ~A7a!

one has
d

dt

dRi~ t !

dh~$xi%!
5

d

dh~$xi%!
„QiLQ Ri~ t !…. ~A7b!

If Mia(t)5d(t)da,g , then

QiLQ Ri~ t !5 iL Ri~ t !1d~ t !gi~$xi%!. ~A8!

Thus

d

dh~$xi%!
QiLQ Ri~ t !5 iL

dRi~ t !

dh~$xi%!
. ~A9!

The substitution of Eq.~A9! into Eq. ~A7b! yields

d

dt

dRi~ t !

dh~$xi%!
2 iL

dRi~ t !

dh~$xi%!
50. ~A10!

From Eqs.~A10! and ~A6!, one can obtain Eq.~A1b!.
The summation of these terms yields a nonlinear Lan

vin equation



-
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Ẋi5 f i~$Xi%!2gi~$Xi%!1Ri~ t !. ~A11!

Here f i($Xi%) andgi($Xi%) are given by Eqs.~6! and~A4c!.

APPENDIX B: DERIVATION OF TDDFM

This appendix gives the calculation of Eq.~19!. Using the
Poisson bracket,

^J̇~r !&l5^$J~r !,H%PB&l ~B1a!
.

c
tt.

-
.

.

52b21E dG$J~r !,re%PBexpF(
i

l iXi G
3K expF(

i
l iXi G L 21

. ~B1b!

Here re is the distribution function in the canonical en
semble. The integration by parts yields
2b21E dG$J~r !,re%PBexpF(
i

l iXi G K expF(
i

l iXi G L 21

5kBTK H J~r !,expF(
i

l iXi G J
PB
L K expF(

i
l iXi G L 21

~B2a!

5kBTK H J~r !,(
i

l iXi J
PB

expF(
i

l iXi G L K expF(
i

l iXi G L 21

~B2b!

5kBT(
i

l i^$J~r !,Xi%PB&l ~B2c!

Substituting$Xi%5$J(r ),r(r )%, one can obtain Eq.~19!.
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